

Total Environmental Solution Provider CEMS, AAQMS, Effluent Monitoring

ENVIRONMENTAL SOLUTIONS

ANALYSER SHELTER

HOT EXTRACTION CEMS

DILUTION EXTRACTION CEMS

DRY EXTRACTION CEMS

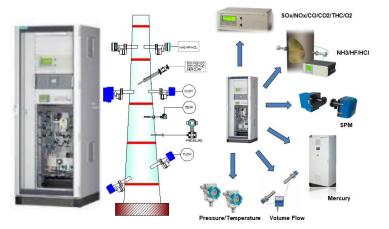
HOT WET CEMS

INSITU LASER BASED CEMS

AAQMS – CONVENTIONAL

AAQMS - COMPACT

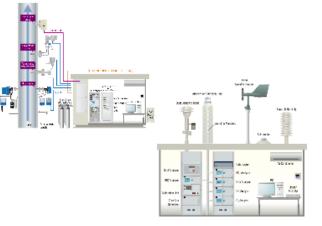
MERCURY ANALYSERS


DUST & SPM MONITORS

STACK FLOW METERS

EFFLUENTS MEASUREMENTS

A COMPLETE CEMS Solution

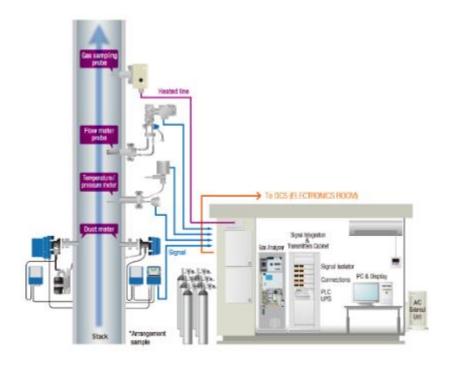


MONITORING SYSTEM OPERATED BY INDUSTRY

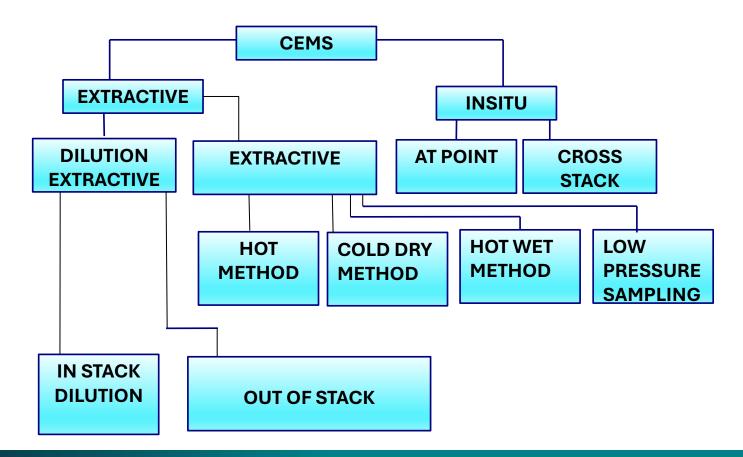
Air Pollution Monitoring System Continuous Emission Monitoring System

Ambient Air Quality Monitoring System

Water Pollution Monitoring System


Effluent Monitoring System

WHAT IS CEMS?



A continuous emission monitoring system (CEMS) is the total equipment necessary for the determination of a gas or particulate matter concentration or emission rate using pollutant analyser measurements and a conversion equation, graph, or computer program to produce results in units of the applicable emission limitation or standard

TYPE OF CEMS TECHNIQUE

Plenty of pollutants need to be measured:

- Particulates:
 - Total Dust or Opacity, Heavy Metals
- Inorganic Compounds:

- CO, CO₂, SO₂, NO/NO₂/NO_x, NH₃, HCl, HF, Total Hg

- Organic Compounds:
 - THC, Dioxins & Furans
- Reference Values:
 - O₂, H₂O, Temperature, Pressure, Gas Velocity / Flow

What Are The Requirements?

- >All Analysers are provided as individual units and/or Multi-Component Analysers
- CEMS Gas Analysers require suitable Sample Handling & Conditioning units
- Data Acquisition, Handling & Transmission is required

Reliable and Accurate Data

How to get that?

- Application-optimized Sample Handling & Conditioning Units
- ✓ Reliable Analysers
- ✓ Accurate Integration into the Monitoring System (CEMS)
- ✓ Availability of Support, Service, Maintenance, AMCs

What Are the Common Stack Pollutants?

SULPHUR DI OXIDE > SO₂ > NO_x **OXIDES OF NITROGEN** > CO **CARBON MONO OXIDE** > PM **PARTICULATE MATTER** > HCL **HYDROGEN CHLORIDE** ≻NH3 **AMMONIA** ≻HF **HYDROGEN FLUORIDE** > TOC **TOTAL HYDRO CARBON** MERCURY ≻Hg

Overview of Technologies

Method	Technique	Technology	Gases Measured
Non-Dispersive	Hot Extraction Cold dry Extraction In-situ	Beer Lambert Law Filter photometer	SO2, NOx, CO, CO2
Non-Dispersive	Hot Extraction Cold dry Extraction In-situ	Beer Lambert Law	H2S, SO2,
UV Fluorescence	Cold Dry Extractive Dilution Extractive	Excitation (214nm) and Fluorescence (300 nm)	H2S, SO2
Chemiluminescence	Dilution Extractive	Converter	Oxides of Nitrogen
Dispersive Ultraviolet	In-Situ	Beer Lambert Dispersive	SO2, NH3, H2S
Enhanced Laser	Extractive / Insitu	OFCEAS / ICL / QCL	H2S, HF, NH3, HCl, HCN, SO2, SO3, NO,NO2,CO, CO2, O2
TDLS	Insitu	Wavelength Modulation Spectroscopy	H2S, HF, NH3, HCl, O2, CO,CO2, H2O
Flame Ionization Detector (FID)	Hot Wet Extractive	Hydrogen flame and measure hydrocarbon	THC, VOC

Method	Technique	Technology	Gases Measured
Fourier Transform Infra Red (FTIR)	Hot Wet Extractive	Beer Lambert Law Filter photometer	H2S, HF, NH3, HCl, HCN, SO2, NO,NO2,CO, CO2, O2, H2O
Gas Chromatography	Hot Wet Extractive Hot Extraction Cold Dry Extraction	GC separation and FID detection	VOC, THC, H2S, HF, NH3, HCl, HCN, SO2, NO,NO2,CO, CO2, O2, H2O
Mass Spectrometry	Hot Wet Extractive Hot Extraction Cold Dry Extraction	Ionisation	VOC, THC, H2S, HF, NH3, HCl, HCN, SO2, NO,NO2,CO, CO2, O2, H2O
Atomic Absorption	Hot Wet ex-situ Cold Dry ex-situ	Resonance Mercury emission/absorption	Hg
Atomic Fluorescence	Hot Wet ex-situ	fluorescence analyzer	Hg
Paramagnetic	Hot Extraction Cold dry Extraction	Measures unique magnetic effect of oxygen	02
Zirconium Oxide	Hot Extraction Cold dry Extraction In-Situ	Transport of oxygen ions (Nernst Eqn)	02
Electrochemical	Hot Extraction Cold dry Extraction	Chemical reaction	02

AKIC

World's Largest ever CEMS Project in terms of count of the Number of Stacks

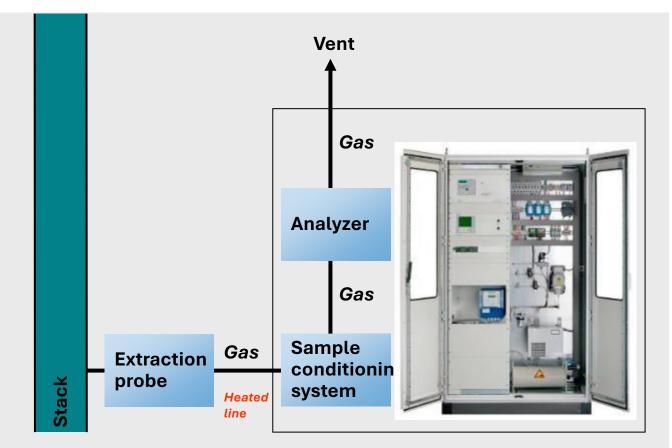
Large Scope

- 1. 150+ stacks to be measured including SRU Stacks
- 2. 200 + CGA & Laser
- 3. 77 Dust Monitors
- 4. 8 nos of Analyzer Shelters with 4 nos of HVAC
- 5. 34 nos of RAID 1 processor based SCADA stations
- 6. Zone 1 & Zone 2 systems with ATEX components
- 7. 45 km of RS 485 Cables , 15 km of heated sample line ,
 25 km of FO cable , 15 km of field SS tubes , 20 km of power & signal cables

Here Are Some Of The Different Technologies For CEMS

&

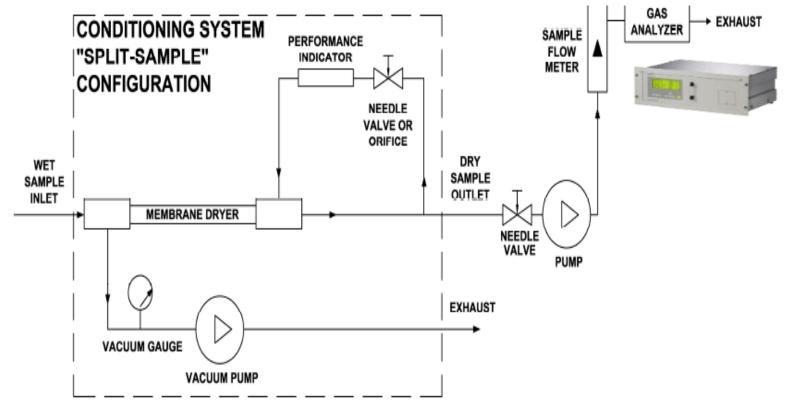
Examples For Flow Diagrams Of Completed CEMS


Technology Option : A

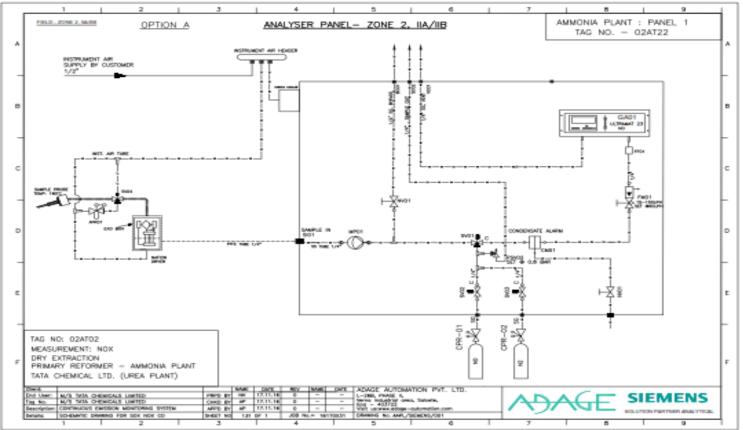
EXTRACTIVE HOT EXTRACTION METHOD OF SAMPLING

EXTRACTIVEHOT EXTRACTION METHOD OF SAMPLING

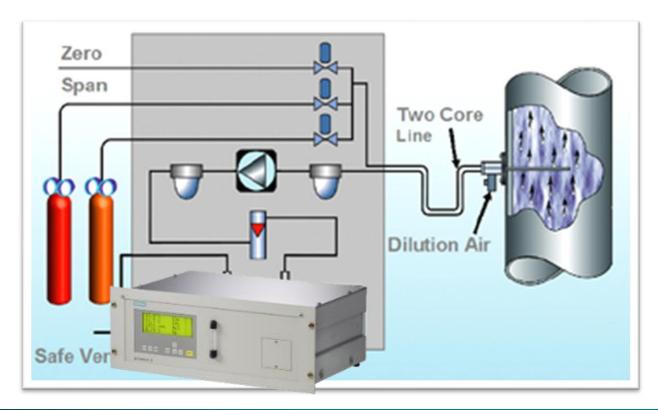
AKIC


Technology Option : B

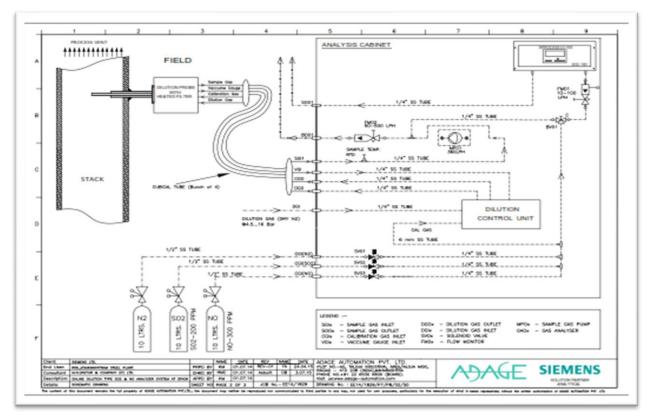
EXTRACTIVECOLD DRY METHOD OF SAMPLING


Extractive based on COLD DRY METHOD

Typical SHS Design for COLD DRY METHOD


Technology Option : C

In Stack Dilution System


MEASUREMENT BASED ON DILUTION TECHNIQUE

Typical SHS Design for Dilution based CEMS

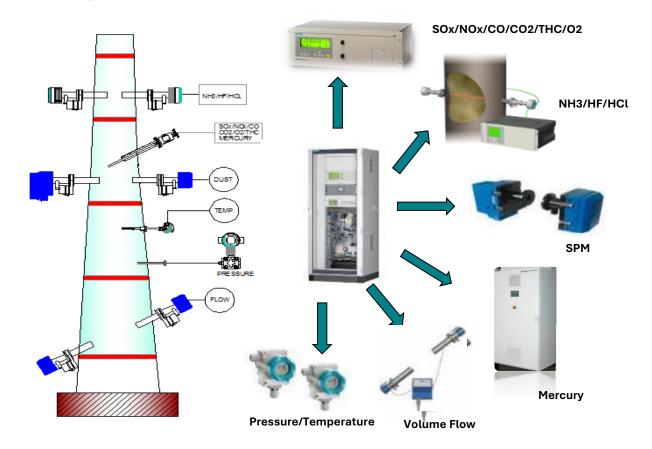
Technology Option : D

INSITU - Method Of Measurement

PATH TYPE INSITU CEMS :

TDLS System Design for SOx, Nox, CO, O2, H2O, NH3, HF, HCL

- Insitu Single-line molecular absorption spectroscopy
- Absorption Technology Wavelength Modulation Spectroscopy
- Fast Response time
- Zero Drift No Calibration


ADAGE KANOO offers a comprehensive CEMS portfolio with all different Sampling Techniques

For no two applications are identical

Adage Offers Complete CEMS Solution

CERTIFIED ANALYZERS

- Analyzers are Certified according to EN 14181/ EN 15267 by TU
- Analyzers are Certified according to MCERTS, UK
- Analyzers are compliant to US EPA

Standardized CEMS

Experience & Compliance

AKIC

ΛΚΛΙ

SIEMENS

Set CEM 1 - Certificate some details...

Set CEM 1

Standard system for continuous emission measuring Report No. 1204119 (July 2008)

Manufacturer: Siemens AG Industry Sector Industry Automation, Karlsruhe

TÜV Süd Industrie Service GmbH is herewith certifying that the analysing system Set CEM 1 is in accordance with EN ISO 14956, Jan. 2003 and Julfils QAL1 of EN 14181 or the following measurement ranges:

Analyser Type	Smallest tested measurement range	Licensed for measurements at plants according regulations for:	Published at:
Ultramat 23-7MB 233 (SO ₂ , NO, CO and O ₂)	0-400 mg/m² SO ₂ 0-250 mg/m3 NO 0-150 mg/m² CO 0-10/25 Vel.% O ₂	13. BimSchV, TALuft (2001/80/EG, TI Air)	GMBI Nr. 1/98 and GMBI Nr. 22/99
Ultramat 23-7MB 2335/ 2337 (NO, CO, O ₂)	0-100 mg/ m3 NO 0-150 mg/m ³ CO 0-10/25 Vol.% O ₂	13/27. BimSchV, TALuft (2001/80/EG, TI Air)	BAZ 81/ 2005 and BAZ 33/ 2008

or internal use only / © Siemens AG 2011. All Rights Reserved.

Industry Sector

And these are examples, when they were completed for Indoors installation or Outdoors installation

Completely Integrated Free Standing CEMS Cabinets for Hazardous areas integrated with Certified Hazardous Area Air Conditioners

Free Standing Analyzer Cabinets

Hazardous Area CEMS Shelter

THANK YOU

AKA

Adage Kanoo Analytical Industry LLC D 64 & 65 / KLP 3 KEZAD, Abu Dhabi United Arab Emirates

AKIC

Adage Kanoo Industrial Company Building NO: 2947, Additional NO: 6829 Jubail, Kingdom of Saudi Arabia Postal code: 35717